Constance de la force comme critere de la forme rationnelle d'une construction.

1. Introduction

Une des tâches essentielles des ingênieurs occupes a 1*art de construction consiste dans le choix de formea rationnelles pour les constructions projetes et exfcuters par eux.

Il est pourtant a constater que la preparation des architectes, ainsi que des ingénieurs pour I'accomplissement de telle têche est insuffiaante. Lans 1^{\prime} ecuacaiton des ingenieurs 1 'attention principale est dirigee vers 1 'analyse du travall de differents systemes de consiruction, qui sont considerbe presque comme des dons de la nature. Ceci résulte en une attituche passive dans la recherche des formes rationnelles qui constitue pourtant la tâche essentielle de $I^{\circ} 6 t u d e$ d'un projet de construction.

A son tour 1'architecte concentre son attention sur Ia recherche d 'une forme asissant visuellement sur 18 côte psychique de 1 homme. Jans leur activitt, dirige vers un but tellement important, les architectes ne se basent pas pour la plupart sur des realites objectives rationnelles. in plus, ce qui n° est pas un secret, la connaissance des problèmes de resistance et de la tachnique dexecution de la construction reste le talon d-chille de presque tous les architectes. Dans cet etat de chose la neceselte s'avère de dévelop-
per parmi lea projecteurs un plus vif interet pour la theorie et la pratique de la creation de la forme d'une construction.

Les ingenieurs ont plus de facilite a conprendre et a assimiler ceux des aspects de creation de la forme qui consistent dans la recherche et dans I^{\prime} application des solutions assurant du point de vue technique la possibilite optima de parvenir au but pour lequel la construction considerée a te prevue. Ceci consiste en principe dans la tendance d° appliquer a la réalisation, ainsi quoa 1 'exploitation du bâtiment un eifort minimum. Dans cette tâcho sont tres utiles les consicérations concemant le resistance et la securite de la construction, ainsi que la technique d° execution, en reservant au factour economique un rôle préponderant.
2. Quelques principes de création de la forme de la construction

Il existe un nombre de principes de creation de la forme dune construction sous point de we ci-dessus citt. On peut nommer entre eux des principes de chos d une forme en tenant compte, entre autres: 1 - de la mise en valeur des contraintes admisalbla ¿ans toutes les sections

2 - d'obtention d'une resistance undforme dans touti les sections

3 - du minimum du potentiel clastique
4 - du minimum du coll de revient, du volune ou du
poids de lensamble ou de cifferents materlaux composants.
Ils peuvent être cites encore d'autres principes de creation de la forme dyant pour but remplir plusieures conditions 1 a fols.
Dermi tele principes generaux peut être compte celui de la constance de la forme comme critere de la forme rationnelle. Ce principe applique a une poutre appuyee librement presuppose la pre sence doune force constante/résuitante de toutes les contraintes du même signe/ cans les deux membrures / comprimée et tendue/ sur toute la longueur é la poutre. Pcur prectiser, il a'git done de la constance des composantes horizontales dea forces dans les membrures. Ceci viene en conse quence 10 proportionalite / en chaque section d bres de levier des forces internes au moment flo chissent.
La constance des forces resulte en dificrents avan tages contribuant : 1 'obtention du ci-dessus cite optimum general; on eat proche a'atteindre une exploitation complate des qualites de resistance du materisu et on gagne des facillte essenticiles d"execution.
in premier rang il y gurait a citer la posolbilite deriter des changements des soctions des membrures, ce que represente un avantage dans les constructions en beton armb et precontraint, de même
que dans les constructions on acier et on bois. Un antre aventege est celui dune baisse consictrable de forces dinteraction mutuelle des deux membrures. Cher que changement de iorce, p.ex. dans 1^{\prime} armature inferieure de la poutre en bston amb, ou dians 1 a membrure tendue d "un treillis, exige " 1 "evacuation" de 1 "accrois soment de force vara la zone situce de l° autre cote de I'pxe neutre. Conc la condition essentielle de risistet ce de 1 'ensemble d'un systeme en cas de changement dee forces dans les membrures est d 'ossurer l 'association des deux zones.

La grandeur de la force de cisalllement dans la region entre les deux zones /cosprimle et tendua/ est propostionnelle a la derivede la force dans les meabrures. S1 nous comparons ceux sutemes i (e poutres en treillis, cont le premiar a des membrures paralleles, et cons le second les distances entre les mombrures sont proo portionnelles oux moments correspondants, nous aurons a constater une difeerence essentielle entre lea grasdeurs des forces cans les c:oisillons, malgre le weme trace de forces transversales/figela et $1 \mathrm{~b} /$. Le secona treillis presente le cas d"une veleur constante des composantes horicontales des forces dans les membruree et les valeurs zéro des forces cans les croisillons. On peut egalement simaciner $1 e$ cas d iun bysteme chargé de telle maniere, qu'o une force transvereale qui Igale 2ero, les firces de compression et de traction ne sont
pas constantes sur la longueur /fig. 2/; des forces proportionnelles aux changement de ces forces dans les membrures surviennent alors dans 1 "fme. Si un tel systene est execute en beton arwe, des fiasures obliques peuvent apparaitre dans $1^{\circ}{ }^{\circ} \mathrm{me}$, walgre $1^{\circ} \mathrm{ab}-$ sence dune force transversele, considerfe gendralement come etalon du champ de forces en cette region. Nous présentons quelques nxemples pour illustrer 108 principes de creation de la forme on adoptant le critere d'une force constante.
3. Dxemple cie création de la forme en acoptant le critere de force constante.
Exemple 1. Dans les poutreu-types KBO prefontraintice a cables, une disposition a deux membrures a fte adoptee.
La variebilite parabolique de la hauteur correapond qu trace des moments a "une poutre librement appuyes sous charge uniforme. Deux avantages eseentiels an résultent: $1 /$ economie en consommation des materiaux 2/ avantages importants pencant le montage, r®aultant du poids insieniflant en comparaison avec d'autres solutions de systemes de merme hauteur / fig. 3 et $4 /$.
Exemple 2. Treillis afourfs precontreints, constituant la toiture des tribunes de la patinoire artificielle a Varsovie presentent une forme etant 1"image de la variabilit! des moments fiechissants dans une
poutre en porte-à-faux. Cn a obtenu donc un syotème porteur caractérise par une presque constante velear des forces longitudinales cans les deux membrures. in resultat une exploitetion presque totale de la capacité portante ciu materiau a cié atteinte/fige lot $6 /$
Bxemple 3. La construction de la toiture du Super market A Varsovie - du point de vue de sa forme se renge du côte du groupe ci-cessus cite, quoique contrairement aux exemples precêcents le "jeu" des forces internes ne se prodult pas ici en un seul plan Une constiuction continue de toiture du bîtiment de $42 \times 82 \mathrm{~m}$ en plan, recouvre les trois quarte du "Nupermarket". Les nervures arches des halls lateraux espaces de 3 m sont appuyes sur le massif de la par tie centrale de la construction/magasio. La pousco des ares au miveau uu couronnement des poteaux dee murs extcrieurs est absorbse par lea haubans suspendus entre les poteaux sur la longueur totale de 82 . Les arcs et les haubans ainsi disposes forment des cri tes et-ces valles a'une toiture plies, de section reriable des hells lateraux. Les contours des arêtes concaves et convexes des plies donnent $1{ }^{\circ}$ image des grandeurs des momonts flechissants pour le cas donal ¿une poutre à trois traves a deux champs de rives charges et le champs central ilbre de charge. L'ensomble est exécuté en acier de section constante sur toute la longueur. La membrure inforioure est pricpa-
trainte et ses trongons parcourent au-dcasus du toit de la partie centrale sont rectilignea. Ceci est is consequence ul verieure d"acoption du critere de la constance de la forme ians la crifation de for me rationnelle, dans quel cas sux differente olfments du systeme sont donnes les courbures propor tionnelles aux charges qu'elles ont supporter dans différents endroits /fig.'7,8 et9/.

Exemple 4. On a Egalement tenu compte du principe de la creation de la forme en adoptant le critàre de 1 e force constante a 1° Ctucie des projets des bśtimente inçustriels a multiple étages en construction \& chepitesux.
Les elfments particuliers de la construction ont ete concus de maniere permettiant, vu leur poice insigniflant, une transuission directe de forces aux supports; les bras des chapiteaux reposant sur les poteaux sont diriges vers le milieu, tandis que leur forme, ainsi que les nervires des dalles appuybea sur les bres des chapiteaux suivent le cours des moments flechissants /fig. $10,11 a, b, c, d$ et $12 /$. Les forces de traction presque constantes sur le longueur ont été obtenues cans la surface du plancher, ce quil a permís de poser les cables de precontraintes dans deux directions perpendiculaires, on travers et en longueur du bâtiment, sans rens necescite de recourber les cêbles et de differencler
leurs longueurs. Ce fait vaut $\mathrm{a}^{\text {atetre }}$ souligne on raison des difficultes provenant de l'application ce la précontrainte aux systomea traditionnela poutre-bstis dans les betiments a multiples 6taged /fie.13/. A dee portees relativement petites lea variations consicerables des forcea de traction dans. les suctions courtea refultent dans le necesel te d evoir recours eux recourbures, bornes de clibles et ancrages nombreux rendant I° exfcution compliquefe et onereuse.

Exemple 5. D'autres posaibilitis du choix de la forme en tenant compte du critere de la force constante sont représentes par le projet de la toiture-terrasse du hall sportif a Katowlce. Cette toiture en forme doune dalle circulaire, quelque pou afformé, de diametre au-dessus de 100 =
 triques coraprimes ot tencius, suspendus succiselverent sur des fifents de diamètre croissant progresoivament Jusqu"a la rive reposant sur la construction d"appui/fig. 14/。 Parini las differentes posaibilitbe de solution de la construction a oune delle circulaise de telleo dimensions, deux peuvent sitre envisagfes. La premiere conciste dans 1 'application des troilils centripotes avec des surfaces a influence lo long des rayons du cercle. Ils resteralent sous
1° effet des moments du vecteur perpendiculaire au reyon /fie. 15/. Les forces cians les membrures seraient dans ce cas variables et les forces dans les croisilions de grandeur considerable. Une solution differente a Ete eftudife dans le projet. La construction reste ic sous $i^{\text {'effet }}$ des moments aux vecteure correspondants bü directions dee rayons/fqg. 16/.
Dans chaque couplo d'anneaux dont est composée la conbtruction, I'annesu superieur est comprime et I° arnesu insérieur tenciu /fig. 17 et $18 /$.
Les forces dens les onneaux sont dues aux composentes horizontales des forces de traction dans les haubans obliques. Toute la partie interieure do la construc tion / au droit du couple des anneaux cite/ etant ouspencue aux haubens s° ecartant a 1 'exterieur, fait naltre dens $1^{\text {® }}$ nnebu supérieur sur tout sa circonflence une force de compreasion. Par des potelets verticaux 1 poids de la partie interieure de la couverture eat transmis vers I 'enncau inferieur suspendu au systame des câbles suivent, au plus grand anneau voisin. Les composantes horizontales des forces dans les suspensions obliques font naitre la traction cans 1° snneau inferieur ot la compression dans 1 'anneau auperieur succeseif.
De cette maniere en chaque section diametrale de la construction de la toiture agissent les forces de compression en haut et de traction en bas. Celles-ci crent des moments positifs a vecteur radial.

Theoriquement la consommation des materiaux dens les doux solutions soumises a la comparaison, est Ia même. La répartition du matériau dans la construc tion radiale en treillis n 'est pas uniforme, car tous les 3 m les forces dens les membrures subiseant un changement. Dans la conception des anneaur les forcea aur la circonference de chaque anneau de lon gueur moyenne restent inchangees sur plus de 200 . $\mathrm{m}_{\text {, }}$ ce qui resulte on un nombre c^{\prime} 'avantages.
4. Conclus10n

Le principe de la creation de la forme base sur le critere de la force constante est, malgre sa simplicite, universel et comprend a la fois plusieuss aspecte de base de 1 eflaboration des projets de constructions. Guoique la justesse de certaines solutions illustrant ce principe semble d'être Evidente et n'exige pas de definition, neanmins, pous la totallte des problemes lies a l"ftude des projete de constructions/y comptfes les coques/, uns formu lation d'atelier "Constance de la force comme critare de la forme rationnelle d'une construction" semble d"être utile.

